تخمین تبخیر و تعرق روزانه گیاه مرجع با استفاده از سیستم¬های هوش مصنوعی (ANN و ANFIS) و معادله¬های تجربی
(ندگان)پدیدآور
کریمی, سپیدهشیری, جلالناظمی, امیر حسیننوع مدرک
Textمقاله پژوهشی
زبان مدرک
فارسیچکیده
فرآیند تبخیر و تعرق به عنوان یکی از مؤلفههای اصلی چرخه هیدرولوژیک دارای اهمیت فراوانی در مدیریت و توسعه منابع آب و نیز برنامهریزی آبیاری میباشد. در مطالعه حاضر به بررسی قابلیت سیستم استنتاج عصبی – فازی تطبیقی در بهبود تخمین میزان تبخیر و تعرق روزانه گیاه مرجع (ETo) پرداخته شد. دادههای اقلیمی بکار گرفته شده در این مطالعه، شامل دمای هوا، تشعشع خورشیدی، سرعت باد و رطوبت نسبی میباشد که از دو ایستگاه هواشناسی مجهز به دستگاههای اندازهگیری الکترونیکی (سالواتیرا و زامبرانا) در کشور اسپانیا اخذ گردیده و به عنوان ورودیهای مدل عصبی– فازی به منظور تخمین میزان ETo بر اساس معادله پنمن- فائو- مونتیث مورد استفاده قرار گرفتند. نتایج حاصل از مدلهای عصبی– فازی و شبکه عصبی مصنوعی و نیز معادلههای تجربی هارگریوز-سامانی، ریتچی، مک کینگ و تورک در منطقه مقایسه شدند. حاصل تحقیق بیانگر دقت بالای مدل های عصبی- فازی با مقادیر RMSE بین 276/0 تا 437/0میلیمتر در تخمین میزان تبخیر و تعرق (نیاز آبی) روزانه گیاه مرجع میباشد. مدلهای شبکه عصبی مصنوعی با مقادیر RMSE بین 298/0 تا 5/12میلیمتر نیز عملکرد بهتری نسبت به معادله های تجربی نشان دادند.
کلید واژگان
تبخیر و تعرق گیاه مرجعسیستم عصبی-فازی
شبکه¬های عصبی مصنوعی
معادله های ¬تجربی
شماره نشریه
2تاریخ نشر
2013-07-231392-05-01
ناشر
دانشگاه تبریزUniversity of Tabriz




