| dc.contributor.author | Arezoomand, Majid | en_US |
| dc.date.accessioned | 1402-06-14T11:54:51Z | fa_IR |
| dc.date.accessioned | 2023-09-05T11:54:51Z | |
| dc.date.available | 1402-06-14T11:54:51Z | fa_IR |
| dc.date.available | 2023-09-05T11:54:51Z | |
| dc.date.issued | 2023-06-01 | en_US |
| dc.date.issued | 1402-03-11 | fa_IR |
| dc.date.submitted | 2023-08-10 | en_US |
| dc.date.submitted | 1402-05-19 | fa_IR |
| dc.identifier.citation | Arezoomand, Majid. (2023). Automorphism group of quasi-abelian semi-Cayley graphs. Journal of Mathematical Nanoscience, 8(1), 43-48. doi: 10.22061/jdma.2023.10137.1059 | en_US |
| dc.identifier.issn | 2538-2314 | |
| dc.identifier.uri | https://dx.doi.org/10.22061/jdma.2023.10137.1059 | |
| dc.identifier.uri | https://jdma.sru.ac.ir/article_1923.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/1035305 | |
| dc.description.abstract | Let G be a group and R,L,S be subsets of G such that $R=R^{-1}$, $L=L^{-1}$ and $1\notin R\cup L$. The undirected graph $\SC(G;R,L,S)$ with vertex set union of $G_1=\{g_1\mid g\in G\}$ and $G_2=\{g_2\mid g\in G\}$, and edge set the union of $\{\{g_1,(gr)_1\}\mid g\in G, r\in R\}$, $\{\{g_2,(gl)_2\}\mid g\in G,l\in L\}$ and $\{\{g_1,(gs)_2\}\mid g\in G,s\in S\}$ is called semi-Cayley graph over G. We say that $\SC(G;R,L,S)$ is quasi-abelian if R,L and S are a union of conjugacy classes of G. In this paper, we study the automorphism group of quasi-abelian semi-Cayley graphs. | en_US |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Shahid Rajaee Teacher Training University | en_US |
| dc.relation.ispartof | Journal of Mathematical Nanoscience | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.22061/jdma.2023.10137.1059 | |
| dc.subject | Semi-Cayley graph | en_US |
| dc.subject | quasi-abelian semi-Cayley graph | en_US |
| dc.subject | automorphism of graph | en_US |
| dc.subject | Group Theory | en_US |
| dc.title | Automorphism group of quasi-abelian semi-Cayley graphs | en_US |
| dc.type | Text | en_US |
| dc.type | Special Issue of JDMA in the Memory of Prof. Ali Reza Ashrafi | en_US |
| dc.contributor.department | Department of Mathematics, Larestan University | en_US |
| dc.citation.volume | 8 | |
| dc.citation.issue | 1 | |
| dc.citation.spage | 43 | |
| dc.citation.epage | 48 | |