• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Food Biosciences and Technology
    • Volume 13, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Food Biosciences and Technology
    • Volume 13, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Drying Time and Moisture Content of Wild Sage Seed Mucilage during Drying by Infrared System Using GA-ANN and ANFIS Approaches

    (ندگان)پدیدآور
    Amini, GhazaleSalehi, FakhreddinRasouli, Majid
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This study investigated the use of an adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm–artificial neural network (GA-ANN) for the prediction of drying time and moisture content of wild sage seed mucilage (WSSM) in an infrared (IR) dryer. These models (ANFIS and GA-ANN) were fed with three inputs of IR radiation intensity (150, 250, and 375 W), the distance of mucilage from the lamp surface (4, 8, and 12 cm), mucilage thickness (0.5, 1, and 1.5 cm) for prediction of average drying time. Also, to predict the moisture content, these models were fed with 4 inputs IR power, lamp distance, mucilage thickness, and treatment time. The GA–ANN model structure that used 4 hidden neurons, and modeled the drying time of WSSM with a correlation coefficient (r) of 0.984. Also, the GA–ANN model with 9 neurons in one hidden layer, predicts the moisture content with a high r-value (r=0.999). The calculated r-values for the prediction of drying time and moisture content using the ANFIS-based subtractive clustering algorithm were 0.925 and 0.998, respectively, that shows a higher correlation among predicted data and experimental data. Sensitivity analysis results demonstrated that IR intensity and mucilage distance were the main factors for the prediction of drying time and moisture content of WSSM drying, respectively. In summary, the GA–ANN approach performs better than the ANFIS approach and this method can be applied to relevant IR drying process with satisfactory results.
    کلید واژگان
    Genetic algorithm
    Infrared drying
    Sensitivity analysis
    Subtractive clustering

    شماره نشریه
    3
    تاریخ نشر
    2023-07-01
    1402-04-10
    ناشر
    Tehran Science and Research Branch, Islamic Azad University
    سازمان پدید آورنده
    MSc of the Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
    Associate Professor of the Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
    Assistant Professor of the Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.

    شاپا
    2228-7086
    URI
    https://dx.doi.org/10.30495/jfbt.2023.70837.10302
    https://jfbt.srbiau.ac.ir/article_22102.html
    https://iranjournals.nlai.ir/handle/123456789/1001203

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب