عملکرد سطح شیاردار (PRD) در مانع‌های صوتی T شکل به منظور کنترل نفوذ محيطی

محمد رضا منظمی، مهده کادرزاده، پروین نصاری، سمانه مومین بیا

mmonazzam@gmail.com

نویسنده مشترک: تهران، دانشگاه علوم پزشکی تهران، دانشکده بهداشت، گروه بهداشت حرفه‌ای

برایش: 89020380

چکیده
زمینه و هدف: در حال حاضر، ارتباطات صوتی در زمینه بهداشت و درمان از طریق تلفن همراه و انرژی تلفن همراه انجام می‌شود. در این مقاله، تأثیر عملکرد انرژی تلفن همراه (PRD) بر روی مانع T شکل، به منظور کنترل سطح شیاردار در مانع‌های صوتی، بررسی می‌گردد.

روش بررسی: تأثیر عملکرد انرژی تلفن همراه (PRD) بر روی مانع T شکل، به منظور کنترل سطح شیاردار در مانع‌های صوتی، بررسی می‌گردد.

منابع مفاهیم و مرجع تکثیر: بهره‌مندی مبتنی بر طراحی (PRD) در مدل تلفن همراه از طریق پیش‌بینی آماری و بررسی عملکرد انرژی تلفن همراه (PRD) بر روی مانع T شکل، به منظور کنترل سطح شیاردار در مانع‌های صوتی، بررسی می‌گردد.

نتیجه گیری: اثر عملکرد انرژی تلفن همراه (PRD) بر روی مانع T شکل، به منظور کنترل سطح شیاردار در مانع‌های صوتی، بررسی می‌گردد.

واژگان کلیدی: منابع سیستم، مانع T شکل، عملکرد انرژی تلفن همراه (PRD)
مقایسه می‌شود. سپس جهت صحت سنجه اثر بخشی محاسبات در فرکانس‌های طراحی متفاوت انجام می‌شود. در نهایت عملکرد پرتوسیمی، پسندیده شده، با باید از متقابل‌های مختلف با هم مورد متقابلی قرار می‌گیرد.

مواد و روش‌ها

جذب توسط پخش کندنه‌ها (PRD، QRD)
همان‌که موج صوتی بر روی یک صفحه با سطح کاملاً مسطح برخورد می‌کند با همان زاویه انعکاس می‌یابد. در واقع، پخش از انرژی به جهت غیر از زاویه انعکاس منتشر می‌شود. این انتشار به پراگنکت موج انعکاسی را به جهات مختلف پخش می‌کند. هر سطح ناحیه می‌تواند مورد پخش کننده باشد. البته در آزمون‌هایی که در شرایط دارای انتشار سطحی بزرگ تر از پرتوگرماها وجود دارد، راهکار اصلی برای افزایش سطح پخش کننده‌ها استفاده از تکنیک‌های مختلف استفاده از این سطوح از طریق افزایش سطح پخش کننده‌ها استفاده می‌گردد که می‌تواند افت صدا را افزایش داده و باعث حفاظت از گیرنده‌ها شود. در این میان موانع صوتی T شکل یکی از رایج‌ترین و پرپارامترانترین آنها به شمار می‌آید که به صورت کنار پرتوگرماها و گیرنده‌های مورد استفاده قرار می‌گیرد.

چندین مطالعه نشان داده است که میانگین T-شکل می‌تواند بهبود کامل توجه باده مانع صوت را داشته باشد. به‌طور کلی بهبود خنثی می‌تواند بر سطوح پخش کننده‌ها خنثی را داشته باشد. به‌طور کلی بهبود خنثی M-شکل می‌تواند بر سطوح پخش کننده‌ها خنثی را داشته باشد. به‌طور کلی بهبود خنثی M-شکل می‌تواند بر سطوح پخش کننده‌ها خنثی را داشته باشد. به‌طور کلی بهبود خنثی M-شکل می‌تواند بر سطوح پخش کننده‌ها خنثی را داشته باشد. به‌طور کلی بهبود خنثی M-شکل می‌تواند بر سطوح پخش کننده‌ها خنثی را داشته باشد. به‌طور کلی بهبود خنثی M-شکل می‌تواند بر سطوح پخش کننده‌ها خنثی را داشته باشد.
به تناوب عمق شیارهای هردووهه به‌ستگی دارد در این خصوص برای پخش کننده‌های ضرورت مقدار زیادی تناوب عمق شیار طراحی و با اجرا در آن بهره است.

<table>
<thead>
<tr>
<th>QRD</th>
<th>جدول 1: شماره ترتیب در شماره ترتیب</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>مثال ۱</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>مثال ۲</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>مثال ۳</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>مثال ۴</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>مثال ۵</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>مثال ۶</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>مثال ۷</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>مثال ۸</td>
<td>23</td>
</tr>
</tbody>
</table>

سکه ۱ سطح مقطع در بعدها یک QRD با عدد اول ۷ را نشان می‌دهد. همانطور که در شکل می‌شود هر پخش کننده درای تعداد مشخصی شیار می‌باشد که آن را با حرف (N) نمایش می‌دهد که در اینجا (N = v) در واقع همان عدد اول انتخابی است که توسط طراح تعیین می‌گردد و نیز در این نوع پخش کننده همواره عمق یکی از شیارها صفر می‌باشد.

در هر پخش کننده یک شماره ترتیب تعیین می‌شود که با داشتن این شماره ترتیب می‌توان نحوه قرار گیری شیارها کاریکایگر را طراحی نمود که از فرمول زیر به دست می‌آید.

\[sn = n^2 \mod N, \quad n = 0, 1, 2, \ldots, N \]

حدوده بالای مانده به دستاورد یک عمل ریاضی \text{mod}
ایست. هم از طریق استفاده از ترم‌های ریاضی تعیین می‌شود. به‌عنوان مثال زمانی که برای ۷ پاشش شماره ترتیب طبق جدول ۱ عبارت خواهد بود از:

\[sn = n(3, 4, 2, 1, 0, 1, 2, 4, 1) \]

در هر پخش کننده یک شماره ترتیب تعیین می‌شود که با داشتن این شماره ترتیب می‌توان نحوه قرار گیری شیارها کاریکایگر را طراحی نمود که از فرمول زیر به دست می‌آید.

\[sn = n^2 \mod N, \quad n = 0, 1, 2, \ldots, N \]

حدوده بالای مانده به دستاورد یک عمل ریاضی \text{mod}
ایست. هم از طریق استفاده از ترم‌های ریاضی تعیین می‌شود. به‌عنوان مثال زمانی که برای ۷ پاشش شماره ترتیب طبق جدول ۱ عبارت خواهد بود از:

\[sn = n(3, 4, 2, 1, 0, 1, 2, 4, 1) \]
عملکرد سطح شیاردار (PRD)

هر یک از کندنده‌های PRD در این دسته‌بندی دارای یک فرکانس طرایح
f را با دقت کمک آن و سرعت صوت می‌توان طول موج
را به دقت آورد.

\[\lambda_0(M) = \frac{C}{f_0} \]

(2)

سرعت صوت C

Hz

f_0 : فرکانس طرایح

با استفاده از طول موج محاسبه شده می‌توان دقت برای یک از
شیارهای را به شکل می‌تواند (3) نمود.

\[d_n = \frac{s_n \lambda_0}{2(N)} \]

(3)

طول موج طرایح برای شیار مورد نظر (حداکثر طول
موجی که این شیار در آن به عنوان یک کننده عمل خواهد
نموند)

N : تعداد شیارهای پیدایش کننده و يا عدد اول انتخاب شده

sn : شماره ترتیب

d : عمق هر کننده (m)

برای مثال برای شیار شماره ترتیب (1) و طول موج
میزان دقت آن را به شکل زیر تعیین می‌نماید.

\[d_n = \frac{1}{N} \times \frac{0.085}{2} \times \sqrt{V} \]

PRD

یکی از پدیده‌های مهم شرودر (PRD) می‌باشد. ساختار
PRD یکی از پدیده‌های زینت شیارهای به عنوان این
QRD و عمق‌های متغیر تکمیل شده است. که این عمق‌ها
می‌توانند توسط شماره ترتیب و طول موج طرایح به راحتی
محاسبه شود محدوده (4) نموده به دست آمدن شماره ترتیب را

\[S_n = r^n \mod N, n = 1, 2, \ldots, N-1 \]

(4)

دیگر نشان دهنده برای مثال می‌باشد.

میزان طول که در جدول ۲ دیده می‌شود مثلث‌ها تعداد شیارهای را
در (PRD) و ریشه اول را (3) در نظر گرفته و عدد ترتیب به
صورت (تعداد ضریب یک) خواهد بود همین تکنیک محاسبه نمود.

\[d_n = \frac{S_n \lambda_0}{\sqrt{N-1}} \]

(5)

لازم به ذکر است که در عمل هر کننده کننده کننده را تا
نوع نقطه نمایش داد.

\[S_n = r^n \mod N, n = 1, 2, \ldots, N-1 \]

(6)

PRD

در نشان می‌دهد.
روش مدل سازی عددي

روش مدل سازی عددي که می توان با استفاده از آن کارایی انواع مختلف مانند قوی و سطح پوششی و سطح پوششی آتش‌سوزی را با استفاده از تکنیک‌های مختلف محاسباتی کرد. در تحقیقات مورد استفاده قرار گرفته و اعداد سنجین نیز گردیده است.

اپس روشن که در اینجا به همراه با اعداد در تاریخ روشن و در بدی BEM شده که با استفاده از آن می توان با نام‌های دیگر در نظر گرفتن طول مانع‌ها، تناوب را برای مساله بعدی نیز تعیین داد. در این مطالعه، بعد از برمی‌گشت‌ها کمتر از ً/ه در نظر گرفته شده است که کسی بازمانده. معمولاً مقدار از فاصله میان دو نقطه انتخاب یک عنصر با انتخاب می‌شود. این مقدار در ابتدا 5 عدد مورد بررسی در نظر گرفته شده است. نتایج مشخصه‌های مدل‌های طراحی شده به عنوان پایه تعدادی مانع ضربی T شکل طراحی گردید. در همه مدل‌ها، ارتفاع کلی مانع ثابت و 3 متر می‌باشد و ضخامت سریوش به ترتیب 3 و 30 متر، طول سریوش مانع 1 متر در نظر گرفته می‌شود. مشخصه‌های مدل‌های متقاطع در جدول ۳ آرا به انتخاب اتفاق صدا مدل‌های مختلف استفاده گردید. عملکرد هر مدل در اکتوبورمیا و 9 محل کردن مکانیزم زمین بیشتر گردد. ضخامت بیش از حد مدل‌ها، اکتشاف و در نتیجه این اتفاق صدا در زمان مدل‌های متقاطع در اکتشاف های 50 تا 4000 نیتر با استفاده از رابطه

\[
IL = -10 \log \left(\frac{p_0(r, r)}{G(r, r)} \right) dB
\]

که فشار صوت در گردنه با وجود مانع و زمین سخت

\[
P_v = \frac{p_0}{p_v}
\]

لطفاً مدل‌های متقاطع آکوستیکی در سطح بالایی شیارها در پیشنهاد شده است. نتایج با کاهش دادن سایز عرض شیارها نیاز می‌باشد این مواد مورد استفاده قرار گرفته و اعداد سنجین نیز گردیده است.

با کارایی انواع مختلف مانند قوی و سطح پوششی و سطح پوششی آتش‌سوزی را با استفاده از تکنیک‌های مختلف محاسباتی کرد. در تحقیقات مورد استفاده قرار گرفته و اعداد سنجین نیز گردیده است.

اپس روشن که در اینجا به همراه با اعداد در تاریخ روشن و در بدی BEM شده که با استفاده از آن می توان با نام‌های دیگر در نظر گرفتن طول مانع‌ها، تناوب را برای مساله بعدی نیز تعیین داد. در این مطالعه، بعد از برمی‌گشت‌ها کمتر از ً/ه در نظر گرفته شده است که کسی بازمانده. معمولاً مقدار از فاصله میان دو نقطه انتخاب یک عنصر با انتخاب می‌شود. این مقدار در ابتدا 5 عدد مورد بررسی در نظر گرفته شده است. نتایج مشخصه‌های مدل‌های طراحی شده به عنوان پایه تعدادی مانع ضربی T شکل طراحی گردید. در همه مدل‌ها، ارتفاع کلی مانع ثابت و 3 متر می‌باشد و ضخامت سریوش به ترتیب 3 و 30 متر، طول سریوش مانع 1 متر در نظر گرفته می‌شود. مشخصه‌های مدل‌های متقاطع در جدول ۳ آرا به انتخاب اتفاق صدا مدل‌های مختلف استفاده گردید. عملکرد هر مدل در اکتوبورمیا و 9 محل کردن مکانیزم زمین بیشتر گردد. ضخامت بیش از حد مدل‌ها، اکتشاف و در نتیجه این اتفاق صدا در زمان مدل‌های متقاطع در اکتشاف های 50 تا 4000 نیتر با استفاده از رابطه

\[
IL = -10 \log \left(\frac{p_0(r, r)}{G(r, r)} \right) dB
\]

که فشار صوت در گردنه با وجود مانع و زمین سخت

\[
P_v = \frac{p_0}{p_v}
\]

لطفاً مدل‌های متقاطع آکوستیکی در سطح بالایی شیارها در پیشنهاد شده است. نتایج با کاهش دادن سایز عرض شیارها نیاز می‌باشد این مواد مورد استفاده قرار گرفته و اعداد سنجین نیز گردیده است.
جدول ۳ مشخصات‌های مدل‌های مختلف مانع

| انواع مدل‌های
پیش‌کننده‌ها	فرکانس طراحي (N)	عرض شیار (W cm)	شماره ترتیب	توضیحات	
T	_	_	_	_	_
QR4	QRD	7	0.4	12	مانع شیار Q
PR4	PRD	6	0.3	14	مانع شیار P
PR5	PRD	6	0.5	14	مانع شیار P
PR10	PRD	6	1	14	مانع شیار P
PWL	PRD	6	0.4	14	324451 (P)
(ر = 55 Rayls (MKS))					
PWM	PRD	6	0.4	14	324451 (P)
(ر = 55 Rayls (MKS))					
PWH	PRD	6	0.4	14	324451 (P)
(ر = 55 Rayls (MKS))					

![Diagram](image-url)
مراجع در شکل (۳) مقایسه می‌شود. همانطور که دیده می‌شود عملکرد مدل‌های مانع (PR4) و (QR4) در دامنه فرکانس پایین (۵۰۰ تا ۵۰ هرتز) بهبود عملکرد بیشتری را نشان می‌دهد. اگرچه بازار در سه فرکانس (۱۲۵۰، ۱۰۰۰ و ۲۰۰۰) هرتز پایین تر است، در واقع بهبود عملکرد مدل (PR4) از فرکانس‌های پایین تری نسبت به مدل (QR4) شروع شده است.

نتایج طیف نفوذ تراویکتوری ضخامته برای این مدل‌ها در نقطه گیرنده (۵۰۰ تا ۵۵۰ هرتز) نیز نشان می‌دهد که افت صدا در (PR4) به اندازه (۴۰ به دانش‌افزایش) افزایش یافته است.

عکس شیارهای پیش‌تر (PR4) نسبت به (QR4) نشان می‌دهد که طیف نفوذ تراویکتوری ضخامته برای این مدل‌ها در نقطه گیرنده (۵۰۰ تا ۵۵۰ هرتز) نیز نشان می‌دهد که افت صدا در (PR4) به اندازه (۴۰ به دانش‌افزایش) افزایش یافته است.

جدول (۵) و (۶) مقایسه می‌شود در حالت نرده (QR4) و PR4 و QR4 در محدوده طبیعی و این امر احتمالاً به این خاتم است که پخش گیرنده ریشه اول همه دانالهای ممکن از ۱ تا ۶ را داراست. در حالی که پخش گیرنده (QRD) فقط سه داناله اورژون دارا می‌باشد.

عملکرد این مدل‌ها با یک مانع T شکل مساده با عنوان مدل (QR4) و (PR4) در نقاط گیرنده (۵۰۰ تا ۵۵۰) فرکانسی طراحی و (PRD) مانع T و (QRD) مانع T. یک مدل (۰) در نقاط گیرنده (۵۰۰ تا ۵۵۰) فرکانسی طراحی و (PRD) مانع T و (QRD) مانع T. همه این محققین از بهبود عملکرد مانع بهبودان در فرکانس‌های پایین تر نسبت به مدل (PRD) مانع T و (QRD) مانع T.
پایینی است که کمک شایانی جهت کنترل ترافیک و بهبود عملکرد کلی توزیع شده از Xو از این مورد دو شکل 5 و 6 در 200 هرتز ارایه شده‌اند تا ارائه دهه رایگان نخست را در فناوری‌های پایین نشان دهد.

سه‌های ناحیه مرزی مشترک بر تنظیم به زمان، در ارتفاع بالاتر و دور از زمین به روشی در هر دو شکل با قابل مشاهده است.

به‌طور کلی بهبود توزیع مانع مدل PR4 در تنظیم به زمان ارائه شده‌اند. همان طور که دیده می‌شود، مانع PR4 از ارتفاع بالاتر شاهد پایین کنند که عمک بالاتر شیارها در پایین کننده با کاری می‌کند که عمل بالاتر شیارها در پایین کننده با فناوری‌های پایینی تنظیم شده، بایاً بایاً از این فناوری‌ها اثر پایین کننده بیشتر در سطح فوقانی مانع ارایه می‌شود. ارائه مشاهده می‌گردد و در نهایت همان طور که در هر دو شکل می‌بینیم، مورد مانع لی‌دار

شکل ۳: نمودار مقطع محاصره بهبود افت صدا مانع مدل ۲ و PR4 نسبت به مانع مرجع در ۲۰۰ هرتز
محمدرضا منظم و همکاران

به علاوه افت صدا کلی توزیع شده A این مدلها در نقطه گرند (PR4) درونواحی دور از زمین در حوزه گستردگی عاملکره بهتری را دارد. میزان بهبود حاصل از مدل مانع (PR4) نسبت به مانع سخت معادل آن در این نواحی حدود 2 تا 3 دسی بل می‌باشد. در حالتی که بهبود نسبت به مانع مدل QR4 به 4 دسی بل هم می‌رسد. در واقع در این فرکانس، مانع عاملکره کمتر نسبت به یک سطح سخت دارد. اما کلی توزیع شده A مانع می‌شود.

مانع مدل (PR4) درونواحی دور از زمین در حوزه گستردگی عاملکره بهتری را دارد. میزان بهبود حاصل از مدل مانع (PR4) نسبت به مانع سخت معادل آن در این نواحی حدود 2 تا 3 دسی بل می‌باشد. در حالتی که بهبود نسبت به مانع مدل QR4 به 4 دسی بل هم می‌رسد. در واقع در این فرکانس، مانع عاملکره کمتر نسبت به یک سطح سخت دارد. اما کلی توزیع شده A مانع می‌شود.

اثر فرکانس طرایح

در این مدل اثر فرکانس‌های طرایح متفاوت بر عاملکره آکوستیکی مانع PRD بررسی می‌شود. در این مورد، سه مدل متفاوت به نام‌های PR10، PR15 و PR20 به ترتیب با فرکانس‌های طرایح 400، 500 و 600 هریتز طراحی می‌شود، و یکی‌گیاه مدل‌های طرایح شده در جدول ۳ نشان داده شده است. همان طور که در شکل ۷ نشان داده می‌شود، با تفاوت جزئی نسبت به PR5 بالاترین بازده را دارد. با افزایش فرکانس طرایح، بازده بخش کننده ها در فرکانس‌های بالاتر از دست می‌رود. این امر به این نتیجه است که فرکانس مؤثر متغیر به سمت فرکانس‌های بالاتر سوی داده می‌شود.
عملکرد سطح‌دار (PRD)...

شکل ۷: اثر PRD یا فرکانس‌های طرازی متفاوت در مدل T شکل نقطه‌گیرنده (۰۰۵-۰۵۰).

اکنون مدل ۴ PRD را مشخص می‌کنیم. همان‌طور که به روشی در شکل مشاهده است، بهبود قابل توجهی با استفاده از یک لاک‌پیکار کم مقاوم در دامنه گسترده‌ای از فرکانس‌ها به دست می‌آید. این‌طور مقاوم می‌تواند با افزایش توانایی جذب سطح عملکرد کلی را بهبود بخشید.

به این علت است که افزایش داده مدل ۴ در این مکان گیرنده به میزان (۰/۸۸ dB(A)، افزایش می‌یابد. این به‌ویژه با افزایش مقاومت‌هایی از ۵/۲ تا ۵/۸ رایان قابل افزایش می‌یابد.

در این مورد افزایش توانایی شده در مدل ۴ A به دلیل افزایش توانایی مدل ۴ در برابر توانایی مدل ۵ که از واریام با مقاومت ۵ که از دامنه گیرنده (۰۰۵-۰۵۰).

شکل ۸: بیهوده افت صدا حاصل از یک لاک‌پیکار واریام با مقاومت جریان مدل ۴ PRD یا مکان گیرنده ۵/۲۸ (Mks) Rayls نشان می‌داشته. در واقع این شکل تفاوت‌های افت صدا در مدل مدل ۴ PRD را مشخص می‌کند. همان‌طور که در شکل مشاهده است، بهبود قابل توجه با استفاده از یک لاک‌پیکار کم مقاوم در دامنه گسترده‌ای از فرکانس‌ها به دست می‌آید. این‌طور مقاوم می‌تواند با افزایش توانایی جذب سطح عملکرد کلی را بهبود بخشید.
بحث و تنبه گیری
عملکردهای آکوسنتریک مانع‌های صوتی تراویک

در بررسی مثبتی از این مطالعه به روش‌های متمایل به اینفشاریت سنجی

 Nahvi مدل مختلفی از مانع‌های Identity بررسی کرده و با استفاده

T منبع اصلی این مطالعه است که در جدول 3 میانگین مقدار متوسط

<table>
<thead>
<tr>
<th>Barrier type</th>
<th>IL Mean (dB (A))</th>
<th>ΔIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T “Ref”</td>
<td>16/9</td>
<td>0</td>
</tr>
<tr>
<td>QR4</td>
<td>19</td>
<td>2/1</td>
</tr>
<tr>
<td>PR4</td>
<td>19/7</td>
<td>2/8</td>
</tr>
<tr>
<td>PR5</td>
<td>19/5</td>
<td>2/6</td>
</tr>
<tr>
<td>PR10</td>
<td>17/5</td>
<td>2/5</td>
</tr>
<tr>
<td>PWL</td>
<td>20/7</td>
<td>3/8</td>
</tr>
<tr>
<td>PWM</td>
<td>20/4</td>
<td>3/5</td>
</tr>
</tbody>
</table>
عملکرد سطوح شیرادار (PRD)

عمکردهای مکشود در این مورد که از طراحی ۱۰۰۰ هرتز استفاده می‌شود، عملکرد کلی توزین شده با PRD (مدل A) به میزان (PR,) ۲/۱ پایینتر از مدل PRD (مدل ۴) است.

در فرکانس‌های بالایی، قابل قبولی عملکرد دیفیوزرهای شرودر شود. به‌طور کلی، این ابزار با مثابه کاهش اثر رزونانس در شیاری می‌شود. بنابراین، این ابزار با مثابه چنین اثری در سطح عملکرد در فرکانس‌های بالا کاهش نمی‌یابد.

برای بهبود عملکرد همه جانبه مانع های پخش‌شده می‌شود. ویل قراردادن ابزار مثابه در سطح عملکرد پخش‌شده به رغم افزایش جدی، کاهش چشم‌گیر عملکرد مانع در
Performance of PRD Welled Surfaces in T Shape Noise Barriers for Controlling Environmental Noise

*Monazzam M.R 1, Naderzadeh M. 1, Nassiri P. 2, Momen Bellah S. 2

1 Department of Occupational Engineering, Health I School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Environmental Engineering, Graduate School of the Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran

Received 13 March 2010; Accepted 25 May 2010

ABSTRACT

Backgrounds and Objectives: There is a considerable notice in the use of noise barriers in recent years. Noise barriers as a control noise solution can increase the insertion loss to protect receivers. This paper presents the results of an investigation about the acoustic efficiency of primitive root sequence diffuser (PRD) on environmental single T-shape barrier.

Materials and Methods: A 2D boundary element method (BEM) is used to predict the insertion loss of the tested barriers. The results of rigid and with quadratic residue diffuser (QRD) coverage are also predicted for comparison.

Results: It is found that decreasing the design frequency of PRD shifts the frequency effects towards lower frequencies, and therefore the overall A-weighted insertion loss is improved. It is also found that using wire mesh with reasonably efficient resistivity on the top surface of PRD improves the efficiency of the reactive barriers; however utilizing wire meshes with flow resistivity higher than specific acoustic impedance of air on the PRD top of a diffuser barrier significantly reduces the performance of the barrier within the frequency bandwidth of the diffuser. The performance of PRD covered T-shape barrier at 200 Hz was found to be higher than that of its equivalent QRD barriers in both the far field and areas close to the ground. The amount of improvement compared made by PRD barrier compared with its equivalent rigid barrier at far field is about 2 to 3 dB, while this improvement relative to barrier model “QR4” can reach up to 4- 6 dB.

Conclusion: Employing PRD on the top surface of T-shape barrier is found to improve the performance of barriers compared with using rigid and QRD coverage at the examined receiver locations.

Key words: Noise barrier, Resistive layers, T- shape barrier, Primitive RootDiffuser

*Corresponding Author: mmonazzam@gmail.com
Tel: +98 21 88992663 Fax :+98 21 88992663