• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • مجله دانشکده پزشکی، دانشگاه علوم پزشکی تهران
    • دوره 80, شماره 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • مجله دانشکده پزشکی، دانشگاه علوم پزشکی تهران
    • دوره 80, شماره 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    قطعه‌بندی خودکار تومورهای گلیوما از مجموعه داده چالش BraTS 2018 با استفاده از شبکه U-Net دو بعدی

    (ندگان)پدیدآور
    پاپی, زهراعابدی, ایرجدالوند, فاطمهعموحیدری, علیرضا
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    523.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله اصیل
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    زمینه و هدف: گلیوما (Glioma) متداول‌ترین تومور مغزی اولیه بوده و تشخیص به موقع تومور در برنامه‌ریزی درمان بیماران حایز اهمیت است. قطعه‌بندی دقیق تومور و نواحی داخلی آن در تصاویر تشدید مغناطیسی (Magnetic resonance imaging) توسط رادیولوژیست به‌عنوان گام اول در تشخیص می‌باشد که افزون‌بر زمان‌بر بودن ممکن است توسط پزشکان مختلف تشخیص‌های متفاوتی داده شود. هدف از انجام مطالعه حاضر ارایه روشی خودکار در قطعه‌بندی تومور و نواحی داخلی آن می‌باشد. روش بررسی: این یک مطالعه بنیادی-کاربردی است که از اردیبهشت 1399 تا شهریور 1400 و بر روی تصاویر مولتی مدالیتی MRI ۲۸۵ بیمار مبتلا به تومور گلیوما از پایگاه داده BraTS 2018 انجام گرفت. در این مطالعه، معماری U-Net دو بعدی با روش مبتنی بر تکه (Patch-based)، شامل یک مسیر رمزگذاری جهت استخراج ویژگی‌ها و یک مسیر رمزگشایی متقارن طراحی گردید. آموزش این شبکه در سه مرحله مجزا با استفاده از داده‌های گلیوما درجه بالا (High grade glioma)، گلیوما درجه پایین (Low grade glioma) و ترکیب دو گروه به‌ترتیب با تعداد 210، 75 و 220 بیمار انجام شد. یافته‌ها: مدل پیشنهادی نتایج ضریب دایس در مجموعه داده‌های HGG، 85/0، 85/0، 77/0، مجموعه داده‌های LGG، 80/0، 66/0، 51/0 و ترکیب دو گروه، 88/0، 79/0، 77/0 به‌ترتیب برای نواحی کل تومور، هسته تومور و ناحیه افزایش‌یافته در داده‌های آموزش برآورد نمود. نتیجه‌گیری: با استفاده از شبکه U-Net می‌توان در قطعه‌بندی دقیق تومور و نواحی مختلف آن کمک شایانی به پزشکان انجام داد، همچنین با تشخیص دقیق و درمان زودهنگام نرخ بقای این بیماران را افزایش داد و کیفیت زندگی آنها را بهبود بخشید.  
    کلید واژگان
    یادگیری عمیق
    گلیوما
    تصویربرداری تشدید مغناطیسی.

    شماره نشریه
    4
    تاریخ نشر
    2022-07-01
    1401-04-10
    ناشر
    دانشگاه علوم پزشکی تهران
    سازمان پدید آورنده
    گروه فیزیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی، اصفهان، ایران.
    گروه فیزیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی، اصفهان، ایران.
    گروه پرتوپزشکی، دانشکده پزشکی،‌ دانشگاه شهید بهشتی، تهران، ایران.
    بخش پرتودرمانی، بیمارستان میلاد اصفهان، اصفهان، ایران.

    شاپا
    1683-1764
    1735-7322
    URI
    http://tumj.tums.ac.ir/article-1-11811-other.html
    https://iranjournals.nlai.ir/handle/123456789/928114

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب