نمایش مختصر رکورد

dc.contributor.authorباقرزاده, ساراfa_IR
dc.contributor.authorمقصودی, آرشfa_IR
dc.contributor.authorشالباف, احمدfa_IR
dc.date.accessioned1400-12-10T21:52:20Zfa_IR
dc.date.accessioned2022-03-01T21:52:20Z
dc.date.available1400-12-10T21:52:20Zfa_IR
dc.date.available2022-03-01T21:52:20Z
dc.date.issued2021-12-01en_US
dc.date.issued1400-09-10fa_IR
dc.identifier.citationباقرزاده, سارا, مقصودی, آرش, شالباف, احمد. (1400). تشخیص بیماران اسکیزوفرنی با استفاده از شبکه‌های عصبی کانولوشنی از تصاویر ارتباطات موثر مغزی سیگنال‌های چندکاناله الکتروانسفالوگرام. مجله دانشکده پزشکی، دانشگاه علوم پزشکی تهران, 79(10), 754-763.fa_IR
dc.identifier.issn1683-1764
dc.identifier.issn1735-7322
dc.identifier.urihttp://tumj.tums.ac.ir/article-1-11465-other.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/847455
dc.description.abstractزمینه و هدف: اسکیزوفرنی یک اختلال روانی است و به شدت بر ادراک و روابط فردی تأثیر می‌گذارد. در حال حاضر تشخیص این بیماری با استفاده از تست‌های شناختی توسط روانپزشک انجام می‌شود که به شدت به تجربه و دانش وی وابسته است. هدف از این مطالعه طراحی یک چارچوب کاملاً خودکار برای تشخیص اسکیزوفرنی از روی سیگنال الکتروانسفالوگرام با استفاده از ارتباطات موثر مغزی و روش‌های یادگیری عمیق است.          روش بررسی: در این مطالعه تحلیلی که از فروردین تا مهر 1400 در تهران به طول انجامیده است، سیگنال‌های الکتروانسفالوگرام 19 کاناله از 14 بیمار مبتلا به اسکیزوفرنی و 14 فرد سالم ثبت و پیش‌پردازش شده است. سپس، معیار ارتباطات موثر با استفاده از روش آنتروپی انتقالی، از سیگنال‌های الکتروانسفالوگرام تخمین زده شده و یک ماتریس ارتباطات نامتقارن 19×19 ساخته شده و با یک نقشه رنگی به‌عنوان یک تصویر نشان داده می‌شود. سپس این تصاویر ارتباطات موثر به‌عنوان ورودی پنج شبکه‌ عصبی کانولوشنی الکس‌نت، رزنت-50، شافل‌نت، اینسپشن و ایکسپشن برای تشخیص بیماران اسکیزوفرنی استفاده می‌شوند. یافته‌ها: نتایج مطالعه نشان داده است، بالاترین میانگین صحت و نمره F برای طبقه‌بندی دو کلاس اسکیزوفرنی و سالم با استفاده از تصاویر مذکور از مدل شبکه اینسپشن، با مقادیر به‌ترتیب برابر با 52/96% و 89/95% در ارزیابی مستقل از فرد و 51/98% و 51/98% در ارزیابی متقابل با 10 دسته به‌دست آمده است. نتیجه‌گیری: با اتکا به نتایج به‌دست آمده، مدل جدید ارایه شده می‌تواند کمک شایانی به روانپزشکان در تشخیص دقیق افراد اسکیزوفرنیا داشته باشد و احتمال خطا و بدنبال آن درمان نامناسب را کاهش دهد.fa_IR
dc.languageفارسی
dc.language.isofa_IR
dc.publisherدانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofمجله دانشکده پزشکی، دانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofTehran University Medical Journalen_US
dc.subjectارتباطات مغزیfa_IR
dc.subjectالکتروانسفالوگرامfa_IR
dc.subjectشبکه‌ عصبیfa_IR
dc.subjectاسکیزوفرنی.fa_IR
dc.titleتشخیص بیماران اسکیزوفرنی با استفاده از شبکه‌های عصبی کانولوشنی از تصاویر ارتباطات موثر مغزی سیگنال‌های چندکاناله الکتروانسفالوگرامfa_IR
dc.typeTexten_US
dc.typeمقاله اصیلfa_IR
dc.contributor.departmentگروه مهندسی پزشکی، دانشکده علوم و فناوری‌های پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.fa_IR
dc.contributor.departmentگروه مهندسی پزشکی، دانشکده علوم و فناوری‌های پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.fa_IR
dc.contributor.departmentگروه مهندسی و فیزیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.fa_IR
dc.citation.volume79
dc.citation.issue10
dc.citation.spage754
dc.citation.epage763


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد