نمایش مختصر رکورد

dc.contributor.authorعامری, علیfa_IR
dc.contributor.authorعامری, علیfa_IR
dc.date.accessioned1399-12-03T21:09:41Zfa_IR
dc.date.accessioned2021-02-21T21:09:41Z
dc.date.available1399-12-03T21:09:41Zfa_IR
dc.date.available2021-02-21T21:09:41Z
dc.date.issued2019-10-01en_US
dc.date.issued1398-07-09fa_IR
dc.identifier.citationعامری, علی, عامری, علی. (1398). تشخیص حرکات مچ دست از روی سیگنال الکترومایوگرام با استفاده از شبکه عصبی کانولوشنال. مجله دانشکده پزشکی، دانشگاه علوم پزشکی تهران, 77(7), 434-439.fa_IR
dc.identifier.issn1683-1764
dc.identifier.issn1735-7322
dc.identifier.urihttp://tumj.tums.ac.ir/article-1-9992-other.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/758833
dc.description.abstractزمینه و هدف: با پیشرفت یادگیری عمیق (Deep learning)، انقلاب بزرگی در هوش مصنوعی ایجاد شده که بسیاری از رشته‌ها را به‌شدت تحت تاثیر خود قرار داده است. یادگیری عمیق، پردازش داده‌های خام با ابعاد بالا (مانند سیگنال یا تصویر) را بدون نیاز به مهندسی ویژگی (Feature engineering)، امکان‌پذیر می‌کند. هدف از این پژوهش، توسعه یک سیستم بر پایه یادگیری عمیق، برای تخمین اراده حرکتی از روی سیگنال EMG می‌باشد. روش بررسی: در این مطالعه، یک سیستم مایوالکتریک (Myoelectric) بر پایه شبکه عصبی کانولوشنال (CNN) (که یک مدل یادگیری عمیق است)، به‌عنوان جایگزینی برای روش‌های معمول طبقه‌بندی (Classification) که نیازمند به مهندسی ویژگی هستند، معرفی شده است. این سیستم برای حرکات انفرادی و ترکیبی مچ دست، بر روی ده شخص سالم، مورد ارزیابی قرار گرفته شد. عملکرد روش پیشنهادی، با یک سیستم استاندارد برپایه Support vector machine (SVM) که از ویژگی‌های حوزه زمانی (Time domain, TD) استفاده می‌کند، مقایسه گردید. یافته‌ها: باوجود عملکرد ثابت شده و رواج بسیار بالای ویژگی‌های TD، سیستم پیشنهادی به‌دقت طبقه‌بندی مشابهی (۰/۱۹P=) دست یافت. مزیت سیستم پیشنهادی در این است که نیازی به استخراج دستی و مهندسی ویژگی از سیگنال EMG وجود ندارد و CNN به‌صورت خودکار، ویژگی‌های مورد نیاز را فراگرفته و از سیگنال استخراج می‌کند. نتیجه‌گیری: این یافته‌ها، توانایی بالای CNN، برای یادگیری و استخراج اطلاعات غنی و پیچیده از سیگنال‌های بیولوژیک را نشان می‌دهد. CNN می‌تواند اطلاعات زمانی و فرکانسی مورد نیاز برای تخمین اراده حرکتی را از روی سیگنال EMG فرا بگیرد.fa_IR
dc.languageفارسی
dc.language.isofa_IR
dc.publisherدانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofمجله دانشکده پزشکی، دانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofTehran University Medical Journalen_US
dc.subjectطبقه‌بندیfa_IR
dc.subjectشبکه عصبی کانولوشنالfa_IR
dc.subjectیادگیری عمیقfa_IR
dc.subjectالکترومایوگرامfa_IR
dc.titleتشخیص حرکات مچ دست از روی سیگنال الکترومایوگرام با استفاده از شبکه عصبی کانولوشنالfa_IR
dc.typeTexten_US
dc.typeمقاله اصیلfa_IR
dc.contributor.departmentگروه مهندسی پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.fa_IR
dc.contributor.departmentگروه مهندسی پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.fa_IR
dc.citation.volume77
dc.citation.issue7
dc.citation.spage434
dc.citation.epage439


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد