نمایش مختصر رکورد

dc.contributor.authorعامری, علیfa_IR
dc.contributor.authorعامری, علیfa_IR
dc.date.accessioned1399-12-03T20:58:25Zfa_IR
dc.date.accessioned2021-02-21T20:58:25Z
dc.date.available1399-12-03T20:58:25Zfa_IR
dc.date.available2021-02-21T20:58:25Z
dc.date.issued2020-05-01en_US
dc.date.issued1399-02-12fa_IR
dc.identifier.citationعامری, علی, عامری, علی. (1399). تشخیص ملانوما با یک مدل یادگیری عمیق. مجله دانشکده پزشکی، دانشگاه علوم پزشکی تهران, 78(3), 150-154.fa_IR
dc.identifier.issn1683-1764
dc.identifier.issn1735-7322
dc.identifier.urihttp://tumj.tums.ac.ir/article-1-10477-other.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/758707
dc.description.abstractزمینه و هدف: سرطان پوست یکی از شایعترین سرطان‌ها و ملانوما (Melanoma) کشنده‌ترین نوع سرطان پوست می‌باشد. خال ملانوسیتیک (Melanocytic nevi) و ملانوما هر دو از ملانوسایت‌ها (سلول‌های تولیدکننده رنگدانه) به‌وجود می‌آیند، اما خال ملانوسیتیک خوش‌خیم و ملانوما بدخیم هستند. این مقاله یک مدل یادگیری عمیق (Deep learning) برای طبقه‌بندی (Classification) این دو ضایعه پوستی ارایه می‌کند. روش بررسی: در این مطالعه تحلیلی که در بهمن ۱۳۹۸ در دانشگاه علوم پزشکی شهید بهشتی انجام شد، از مجموعه داده عکس‌های درماسکوپی Human against machine with 10000 training images, (HAM10000)، هزار تصویر خال ملانوسیتیک و هزار تصویر ملانوما استخراج گردید. از هر مورد، ۹۰۰ تصویر به شکل تصادفی برای آموزش سیستم انتخاب شدند و ۱۰۰ تصویر باقیمانده برای تست اختصاص داده شد. یک مدل یادگیری عمیق شبکه عصبی کانولوشنال (Convolutional neural network)، با استفاده از AlexNet (Krizhevsky et al., 2012) به‌عنوان مدل از پیش ‌آموزش دیده شده (Pretrained)، به‌کارگرفته شد. در ابتدا این شبکه با ۱۸۰۰ تصویر آموزش داده شد و سپس عملکرد آن بر روی ۲۰۰ تصویر ارزیابی گردید. یافته‌ها: مدل پیشنهادی به دقت ۹۳% (Accuracy) در طبقه‌بندی تصاویر به دو کلاس خوش‌خیم و بدخیم دست یافت. همچنین مساحت زیر منحنی Receiver operating characteristic (ROC)، ۹۸/۰، حساسیت ۹۴% (Sensitivity) و اختصاصیت ۹۲% (Specificity) به‌دست آمد. همچنین با تنظیم پارامتر آستانه طبقه‌بندی مدل، امکان افزایش حساسیت، به قیمت کاهش اختصاصیت وجود دارد و بالعکس. نتیجه‌گیری: با توجه به دشواری تشخیص ملانوما حتی برای متخصصین با تجربه، یافته‌های این مطالعه، توانایی بالای یادگیری عمیق را در تشخیص سرطان پوست نشان می‌دهد.fa_IR
dc.languageفارسی
dc.language.isofa_IR
dc.publisherدانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofمجله دانشکده پزشکی، دانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofTehran University Medical Journalen_US
dc.subjectیادگیری عمیقfa_IR
dc.subjectملانوماfa_IR
dc.subjectخال رنگیfa_IR
dc.subjectنئوپلاسم پوستیfa_IR
dc.titleتشخیص ملانوما با یک مدل یادگیری عمیقfa_IR
dc.typeTexten_US
dc.typeمقاله اصیلfa_IR
dc.contributor.departmentگروه مهندسی پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.fa_IR
dc.contributor.departmentگروه مهندسی پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.fa_IR
dc.citation.volume78
dc.citation.issue3
dc.citation.spage150
dc.citation.epage154


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد