نمایش مختصر رکورد

dc.contributor.authorسعيد صمديen_US
dc.contributor.authorمينو نظيفي نائينيen_US
dc.contributor.authorسحر عباسپورen_US
dc.date.accessioned1399-12-02T04:15:29Zfa_IR
dc.date.accessioned2021-02-20T04:15:39Z
dc.date.available1399-12-02T04:15:29Zfa_IR
dc.date.available2021-02-20T04:15:39Z
dc.date.issued2012-03-08en_US
dc.date.issued1390-12-18fa_IR
dc.date.submitted2012-03-08en_US
dc.date.submitted1390-12-18fa_IR
dc.identifier.citation(1390). مدیریت اطلاعات سلامت, 0(0)fa_IR
dc.identifier.issn1735-7853
dc.identifier.issn1735-9813
dc.identifier.urihttp://him.mui.ac.ir/index.php/him/article/view/518
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/749197
dc.description.abstractBackground: Using neural networks and genetic algorithms in evaluating health-related variables has increased recently. Employing intelligent tools for diagnosis and treatment of diseases can reduce medical errors and human and financial losses. In this paper, medical applications of neural networks have been studied in order to help both medical and artificial intelligence researchers. Methods: We used an existing sample in SPSS (patient_los.sav). The sample consisted of patients who received treatment for heart disease. Multilayer perceptron (MLP) was employed to build a neural network to predict the cost and length of treatment. Duration of hospitalization and treatment cost were considered as dependent variables. Other variables were entered into the model as agents or factors. Results: Neural networks can evaluate the outcomes of patients who have or have not undergone surgery. Separate networks can then be used to predict treatment and hospitalization costs and duration provided that the patients who had surgery had been identified. Conclusion: Neural networks designed in this paper can well forecast the usual outcomes of patients. Multilayer neural networks can precisely identify patients who would die after surgery. Non-linear properties of neural networks can help in modeling and forecasting. Keywords: Neural Networks (Computer); Diagnosis; Learning.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherدانشگاه علوم پزشکی اصفهانfa_IR
dc.relation.ispartofمدیریت اطلاعات سلامتfa_IR
dc.titleبرآورد هزینه‌ی درمان و طول دوره‌ی بستری شدن با استفاده از رویکرد شبکه‌ی‌ عصبیen_US
dc.typeTexten_US
dc.contributor.departmentاستاديار، گروه اقتصاد، دانشگاه اصفهان، اصفهان، ايرانen_US
dc.contributor.departmentکارشناس ارشد، گروه اقتصاد توسعه و برنامه‌ريزي، دانشگاه اصفهان، اصفهان، ايرانen_US
dc.contributor.departmentکارشناس ارشد، گروه اقتصاد توسعه و برنامه‌ريزي، دانشگاه اصفهان، اصفهان، ايرانen_US
dc.citation.volume0
dc.citation.issue0


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد