نمایش مختصر رکورد

dc.contributor.authorFotovatnia, Zahraen_US
dc.contributor.authorJones, Jefferyen_US
dc.contributor.authorScheerer, Nicholeen_US
dc.date.accessioned1399-10-19T14:29:03Zfa_IR
dc.date.accessioned2021-01-08T14:29:04Z
dc.date.available1399-10-19T14:29:03Zfa_IR
dc.date.available2021-01-08T14:29:04Z
dc.date.issued2019-09-01en_US
dc.date.issued1398-06-10fa_IR
dc.identifier.citationFotovatnia, Zahra, Jones, Jeffery, Scheerer, Nichole. (2019). A Persian-English Cross-Linguistic Dataset for Research on the Visual Processing of Cognates and Noncognates. Iranian Journal of Applied Linguistics, 22(2), 36-70.en_US
dc.identifier.issn1735-1634
dc.identifier.urihttp://ijal.khu.ac.ir/article-1-3028-en.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/708926
dc.description.abstractFinding out which lexico-semantic features of cognates are critical in cross-language studies and comparing these features with noncognates helps researchers to decide which features to control in studies with cognates. Normative databases provide necessary information for this purpose. Such resources are lacking in the Persian language. We created a dataset and determined norms for the essential lexico-semantic features of 288 cognates and noncognates and matched them across conditions. Furthermore, we examined the relationship between these features and the response time (RT) and accuracy of responses in a masked-priming lexical decision task. This task was performed in English by Persian-English speakers in conditions where the prime and target words were related or unrelated in terms of meaning and/or form. Overall, familiarity with English words and English frequency were the best predictors of RT in related and unrelated priming conditions. Pronunciation similarity also predicted RT in the related condition for cognates, while the number of phonemes in the prime predicted RT for the unrelated condition. For both related and unrelated conditions, English frequency was the best predictor for noncognates. This bilingual dataset can be used in bilingual word processing and recognition studies of cognates and noncognates.en_US
dc.format.extent854
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherTehran, Kharazmi Universityen_US
dc.relation.ispartofIranian Journal of Applied Linguisticsen_US
dc.relation.ispartofزبانشناسی کاربردیfa_IR
dc.subjectPersian-English dataseten_US
dc.subjectCross-language studiesen_US
dc.subjectBilingual word recognitionen_US
dc.subjectCognates and noncognatesen_US
dc.subjectLexical decision tasken_US
dc.subjectPrimingen_US
dc.subjectSpecialen_US
dc.titleA Persian-English Cross-Linguistic Dataset for Research on the Visual Processing of Cognates and Noncognatesen_US
dc.typeTexten_US
dc.typeResearchen_US
dc.contributor.departmentCenter for Cognitive Neuroscience and Psychology Department, Wilfrid Laurier University, Waterloo, Canadaen_US
dc.contributor.departmentCenter for Cognitive Neuroscience and Psychology Department, Wilfrid Laurier University, Waterloo, Canadaen_US
dc.contributor.departmentUniversity of Western Ontario, London, Canadaen_US
dc.citation.volume22
dc.citation.issue2
dc.citation.spage36
dc.citation.epage70


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد