| dc.contributor.author | پناه, امیر | fa_IR |
| dc.contributor.author | فلاحپور, سامره | fa_IR |
| dc.date.accessioned | 1399-09-23T17:40:52Z | fa_IR |
| dc.date.accessioned | 2020-12-13T17:40:52Z | |
| dc.date.available | 1399-09-23T17:40:52Z | fa_IR |
| dc.date.available | 2020-12-13T17:40:52Z | |
| dc.date.issued | 2020-12-01 | en_US |
| dc.date.issued | 1399-09-11 | fa_IR |
| dc.identifier.citation | پناه, امیر, فلاحپور, سامره. (1399). مدل پیش بینی ابتلا به دیابت نوع2 با استفاده از
الگوریتم های داده کاوی. مجله دانشگاه علوم پزشکی مازندران, 30(191), 22-30. | fa_IR |
| dc.identifier.issn | 1735-9260 | |
| dc.identifier.issn | 1735-9279 | |
| dc.identifier.uri | http://jmums.mazums.ac.ir/article-1-13647-fa.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/682533 | |
| dc.description.abstract |
سابقه و هدف: استفاده گسترده از سیستمهای اطلاعات و پایگاههای داده، ادغام آن را با شیوههای سنتی برای دستیابی به دقت و سرعت بالاتر جهت تشخیص و پیشگیری بیماری و انتخاب روشهای درمان و تصمیمگیریها به یک الزام تبدیل کرده است. این مطالعه با هدف ارائه یک سیستم دقیق برای تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و به کارگیری یک روش ابتکاری شامل ترکیب شبکه عصبی با الگوریتم هوش دسته جمعی ذرات، انجام پذیرفت.
مواد و روشها: در این مطالعه کاربردی، همراه با آموزش شبکه عصبی از الگوریتم هوش دسته جمعی ذرات جهت تعیین بهینهتر اوزان شبکه عصبی با استفاده از نرمافزار رپیدماینر بر روی مجموعه داده pima مربوط به 768 بیمار درکشور هند استفاده گردید.
یافتهها: بررسی انجام شده نشان می دهد که الگوریتم پیشنهادی می تواند منطبق بر مدل واقعی باشد به طوری که بیشترین مقدار دقت، ویژگی و حساسیت در روش پیشنهادی با تعداد 50 آزمایش مختلف، به ترتیب 1/94، 88/92، 12/92 درصد می باشد.
استنتاج: در روش پیشنهادی مدل پیش بینی دیابت نوع 2، متوسط خطای مدلسازی به عنوان تابع هدف بعد از یکسری تکرار کمینه شد با افزایش جمعیت اولیه و تعداد تکرارها علاوه بر افزایش دقت روش پیشنهادی باعث بهبود پارامترهای حساسیت، ویژگی پیشبینی مثبت نیز شد بهطوری که حساسیت، دقت روش پیشنهادی نسبت به روشهای مشابه که در گذشته بکار رفته بود، بهتر و بیشتر میباشد. | fa_IR |
| dc.format.extent | 372 | |
| dc.format.mimetype | application/pdf | |
| dc.language | فارسی | |
| dc.language.iso | fa_IR | |
| dc.publisher | دانشگاه علوم پزشکی مازندران | fa_IR |
| dc.relation.ispartof | مجله دانشگاه علوم پزشکی مازندران | fa_IR |
| dc.relation.ispartof | Journal of Mazandaran University of Medical Sciences | en_US |
| dc.subject | داده کاوی | fa_IR |
| dc.subject | دیابت | fa_IR |
| dc.subject | شبکه عصبی | fa_IR |
| dc.subject | هوش دسته جمعی ذرات | fa_IR |
| dc.subject | مهندسی کامپیوتر(نرم افزار) | fa_IR |
| dc.title | مدل پیش بینی ابتلا به دیابت نوع2 با استفاده از
الگوریتم های داده کاوی | fa_IR |
| dc.type | Text | en_US |
| dc.type | پژوهشي-کامل | fa_IR |
| dc.contributor.department | مربی، گروه کامپیوتر و آی تی، موسسه آموزش عالی هدف، ساری، ایران | fa_IR |
| dc.contributor.department | کارشناسی ارشد مهندسی نرم افزار، دانشگاه علوم پزشکی مازندران، ساری، ایران | fa_IR |
| dc.citation.volume | 30 | |
| dc.citation.issue | 191 | |
| dc.citation.spage | 22 | |
| dc.citation.epage | 30 | |