نمایش مختصر رکورد

dc.contributor.authorباستین تختی, سجادfa_IR
dc.contributor.authorفیروزی جهانتیغ, فرزادfa_IR
dc.date.accessioned1399-08-23T09:07:58Zfa_IR
dc.date.accessioned2020-11-13T09:07:58Z
dc.date.available1399-08-23T09:07:58Zfa_IR
dc.date.available2020-11-13T09:07:58Z
dc.date.issued2019-11-01en_US
dc.date.issued1398-08-10fa_IR
dc.identifier.citationباستین تختی, سجاد, فیروزی جهانتیغ, فرزاد. (1398). ارائه مدلی تشخیص ابتلا به بیماری مزمن کلیوی با استفاده از تکنیک‌های یادگیری ماشین. مجله علوم پزشکی رازی, 26(8), 14-22.fa_IR
dc.identifier.issn2228-7043
dc.identifier.issn2228-7051
dc.identifier.urihttp://rjms.iums.ac.ir/article-1-5727-fa.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/595201
dc.description.abstractزمینه و هدف: امروزه کاربرد هوش مصنوعی درزمینه سیستم‌های سلامت گسترش زیادی داشته است. یادگیری ماشین به‌عنوان یکی از زیرشاخه‌های هوش مصنوعی، کاربردهای فراوانی درزمینه تشخیص پزشکی دارد. بیماری مزمن کلیوی یکی از شایع‌ترین بیماری‌های مربوط به کلیه در سراسر جهان است که تسهیل و تسریع در امر تشخیص آن نتایج بسیار مطلوبی بر روند درمان آتی آن خواهد داشت. هدف این پژوهش ارائه مدلی هوشمند برپایه‌ی تکنیک‌های یادگیری ماشین جهت تشخیص بیماری نارسایی کلیوی است.  روش کار: این مطالعه از نوع توصیفی-تحلیلی می‌باشد. داده‌های مورد استفاده در این تحقیق از تعداد ۴۰۰ فرد بیمار و غیر بیمار در کشور هندوستان استخراج‌شده است. این داده‌ها ابتدا در محیط پایتون پیش‌پردازش شده و از مشاهدات نویز و دورافتاده پاک شد. سپس الگوریتم‌های ماشین بردار پشتیبان، پرسپترون چندلایه و درخت تصمیم جهت دسته‌بندی داده‌ها به کار گرفته شد. معیارهای ارزیابی Accuracy، Recall و Precision برای ارزیابی عملکرد این دسته‌بندها محاسبه شد. یافته‌ها: با توجه معیارهای ارزیابی محاسبه‌شده، برای الگوریتم ماشین بردار پشتیبان، مقادیر معیارهای Accuracy، Recall و Precision به ترتیب برابر 97/0، 961/0، 986/0 به دست آمد. یافته‌ها حکایت از عملکرد بهتر الگوریتم ماشین بردار پشتیبان ازنظر معیار Accuracy دارد. ازنظر معیار Recall، الگوریتم درخت تصمیم با مقدار 963/0 بهترین عملکرد را داشته و از نظر معیار Precision، الگوریتم پرسپترون چندلایه با مقدار 994/0 بهترین عملکرد را در دسته‌بندی داده‌ها داشتند. نتیجه‌گیری: نتایج به‌دست‌آمده نشان داد که تکنیک‌های یادگیری ماشین می‌توانند در تشخیص بیماری مزمن کلیوی اثرگذار باشند. به‌کارگیری این تکنیک‌ها می‌تواند امور مربوط به تشخیص و درمان این بیماران را تسهیل کند و احتمال بهبودی افراد را بالا برد. همچنین نتایج نشان داد که مدل ارائه شده بر پایه‌ی تکنیک‌های یادگیری ماشین، در مقایسه با سایر تکنیک‌ها دقیق‌تر، ساده‌تر و کم‌هزینه تر استد.fa_IR
dc.format.extent472
dc.format.mimetypeapplication/pdf
dc.languageفارسی
dc.language.isofa_IR
dc.publisherدانشگاه علوم پزشکی ایرانfa_IR
dc.relation.ispartofمجله علوم پزشکی رازیfa_IR
dc.relation.ispartofRazi Journal of Medical Sciencesen_US
dc.subjectهوش مصنوعیfa_IR
dc.subjectیادگیری ماشینfa_IR
dc.subjectدسته‌بندیfa_IR
dc.subjectتشخیص پزشکیfa_IR
dc.subjectبیماری نارسایی کلیویfa_IR
dc.subjectکلیهfa_IR
dc.titleارائه مدلی تشخیص ابتلا به بیماری مزمن کلیوی با استفاده از تکنیک‌های یادگیری ماشینfa_IR
dc.typeTexten_US
dc.typeپژوهشيfa_IR
dc.contributor.departmentدانشگاه سیستان و بلوچستان، سیستان و بلوچستان، ایرانfa_IR
dc.contributor.departmentدانشگاه سیستان و بلوچستان، سیستان و بلوچستان، ایرانfa_IR
dc.citation.volume26
dc.citation.issue8
dc.citation.spage14
dc.citation.epage22


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد