پیشبینی عدد لوژن به کمک شبکهٔ عصبی مصنوعی و مقایسهٔ آن با روشهای آماری
(ندگان)پدیدآور
پدیدآور نامشخصنوع مدرک
Textزبان مدرک
فارسیچکیده
برآورد ویژگیهای هیدروژئولوژیکی تودهٔ سنگ و پیشبینی میزان جریان آب از بحثهای حیاتی و جدی در مهندسی سنگ بهشمار میرود. از آنجا که در تودهٔ سنگهای درز و شکافدار ناپیوستگیها مسیرهای اصلی جریان آب را بهوجود میآورند، مشخصات آنها تأثیر چشمگیری بر آبگذری خواهد داشت. با وجود تحقیقات فراوان هنوز روش مناسبی که رابطه مشخصی بین همه پارامترها و میزان آبگذری برقرار کند وجود ندارد. امروزه شبکههای عصبی ابزار قدرتمندی برای حل مسائل پیچیده از قبیل پیشبینی، تشخیص الگو و طبقهبندی انواع متغیرها هستند. در این تحقیق به کمک نوعی شبکهٔ عصبی مصنوعی، رفتار و مقدار آبگذری تودهٔ سنگهای گرانودیوریتی ساختگاه سد شور-جیرفت از روی برخی ویژگی ناپیوستگیها از جمله شاخص کیفی سنگ، فراوانی درزهها، بازشدگی، چگالی وزنی درزه، زونهای خرد شده و عمق پیشبینی شده است. رابطهٔ این پارامترها با آبگذری با روش آماری رگرسیون چند متغیره نیز بررسی شده است. دادههای بهکار رفته در آموزش و آزمایش این شبکهٔ عصبی شامل نتایج مربوط به 304 آزمایش لوژن در تودهٔ سنگهای گرانودیوریتی ساختگاه سد شور-جیرفت است. شبکهٔ عصبی پرسپترون چندلایه با قاعده پس انتشار خطا با الگوریتم آموزش Levenberg-Marquardt در این تحقیق استفاده شده است. این بررسیهای نشان میدهد که شبکهٔ عصبی مصنوعی از توانایی فراوانی در حل چنین مسائلی برخوردار است.
کلید واژگان
شبکه عصبی پرسپترون چندلایهلوژن
ویژگی ناپیوستگیها
رگرسیون چندمتغیره
ساختگاه سد شور-جیرفت
پیشبینی
شماره نشریه
1تاریخ نشر
2009-11-011388-08-10
ناشر
دانشگاه خوارزمیشاپا
2228-68377386-8222




