نمایش مختصر رکورد

dc.contributor.authorAmjadi Sardehaei, Ehsanen_US
dc.contributor.authorTavakoli Mehrjardi, Gholamhoseinen_US
dc.date.accessioned1399-08-23T06:07:44Zfa_IR
dc.date.accessioned2020-11-13T06:07:44Z
dc.date.available1399-08-23T06:07:44Zfa_IR
dc.date.available2020-11-13T06:07:44Z
dc.date.issued2020-02-01en_US
dc.date.issued1398-11-12fa_IR
dc.identifier.citation(1398). نشریه زمین شناسی مهندسی, 13(5), 1-22.fa_IR
dc.identifier.issn2228-6837
dc.identifier.issn7386-8222
dc.identifier.urihttp://jeg.khu.ac.ir/article-1-2655-en.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/580642
dc.description.abstractThis paper presents a feed-forward back-propagation neural network model to predict the retained tensile strength and design chart to estimate the strength reduction factors of nonwoven geotextiles due to the installation process. A database of 34 full-scale field tests was utilized to train, validate and test the developed neural network and regression model. The results show that the predicted retained tensile strength using the trained neural network is in good agreement with the results of the test. The predictions obtained from the neural network are much better than the regression model as the maximum percentage of error for training data is less than 0.87% and 18.92%, for neural network and regression model, respectively. Based on the developed neural network, a design chart has been established. As a whole, installation damage reduction factors of the geotextile increases in the aftermath of the compaction process under lower as-received grab tensile strength, higher imposed stress over the geotextiles, larger particle size of the backfill, higher relative density of the backfill and weaker subgrades.  en_US
dc.format.extent541
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherدانشگاه خوارزمیfa_IR
dc.relation.ispartofنشریه زمین شناسی مهندسیfa_IR
dc.relation.ispartofJournal of Engineering Geologyen_US
dc.subjectArtificial neural networks (ANNs)en_US
dc.subjectRegression modelen_US
dc.subjectNonwoven geotextilesen_US
dc.subjectRetained tensile strengthen_US
dc.subjectstrength reduction factor.en_US
dc.subjectGeotecnicen_US
dc.titleUse of Artificial Neural Networks to Estimate Installation Damage of Nonwoven Geotextilesen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.citation.volume13
dc.citation.issue5
dc.citation.spage1
dc.citation.epage22


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد