| dc.contributor.author | Matinfar, Mashallah | en_US |
| dc.contributor.author | Abdollahi Lashaki, Hamideh | en_US |
| dc.contributor.author | Akbari, Mojgan | en_US |
| dc.date.accessioned | 1399-08-22T04:14:54Z | fa_IR |
| dc.date.accessioned | 2020-11-12T04:14:55Z | |
| dc.date.available | 1399-08-22T04:14:54Z | fa_IR |
| dc.date.available | 2020-11-12T04:14:55Z | |
| dc.date.issued | 2016-11-01 | en_US |
| dc.date.issued | 1395-08-11 | fa_IR |
| dc.identifier.citation | (1395). پژوهش های ریاضی, 2(3), 19-32. doi: 10.29252/mmr.2.3.19 | fa_IR |
| dc.identifier.issn | 2588-2546 | |
| dc.identifier.issn | 2588-2554 | |
| dc.identifier.uri | https://dx.doi.org/10.29252/mmr.2.3.19 | |
| dc.identifier.uri | http://mmr.khu.ac.ir/article-1-2594-en.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/521184 | |
| dc.description.abstract | In this article, an applied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of high order Volterra integro-differential equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical illustrations have been solved to assert the credibility and practically of this method | en_US |
| dc.format.extent | 458 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | دانشگاه خوارزمی | fa_IR |
| dc.relation.ispartof | پژوهش های ریاضی | fa_IR |
| dc.relation.ispartof | Mathematical Researches | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.29252/mmr.2.3.19 | |
| dc.subject | Integro-differential equations | en_US |
| dc.subject | Bernouli polynomials | en_US |
| dc.subject | Operational matrix. | en_US |
| dc.subject | alg | en_US |
| dc.title | Numerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order | en_US |
| dc.type | Text | en_US |
| dc.citation.volume | 2 | |
| dc.citation.issue | 3 | |
| dc.citation.spage | 19 | |
| dc.citation.epage | 32 | |