نمایش مختصر رکورد

dc.contributor.authorMatinfar, Mashallahen_US
dc.contributor.authorAbdollahi Lashaki, Hamidehen_US
dc.contributor.authorAkbari, Mojganen_US
dc.date.accessioned1399-08-22T04:14:54Zfa_IR
dc.date.accessioned2020-11-12T04:14:55Z
dc.date.available1399-08-22T04:14:54Zfa_IR
dc.date.available2020-11-12T04:14:55Z
dc.date.issued2016-11-01en_US
dc.date.issued1395-08-11fa_IR
dc.identifier.citation(1395). پژوهش های ریاضی, 2(3), 19-32. doi: 10.29252/mmr.2.3.19fa_IR
dc.identifier.issn2588-2546
dc.identifier.issn2588-2554
dc.identifier.urihttps://dx.doi.org/10.29252/mmr.2.3.19
dc.identifier.urihttp://mmr.khu.ac.ir/article-1-2594-en.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/521184
dc.description.abstractIn this ‎article‎‎, ‎an ‎ap‎plied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of ‎high order ‎Volterra ‎integro-differential‎ equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical ‎illustrations‎ have been ‎solved‎ to ‎assert‎ the ‎credibility‎ and ‎practically‎ of ‎this‎ ‎methoden_US
dc.format.extent458
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherدانشگاه خوارزمیfa_IR
dc.relation.ispartofپژوهش های ریاضیfa_IR
dc.relation.ispartofMathematical Researchesen_US
dc.relation.isversionofhttps://dx.doi.org/10.29252/mmr.2.3.19
dc.subject‎ ‎I‎ntegro-differential equationsen_US
dc.subject‎Bernouli‎ polynomialsen_US
dc.subjectOperational matrix‎.en_US
dc.subjectalgen_US
dc.titleNumerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high orderen_US
dc.typeTexten_US
dc.citation.volume2
dc.citation.issue3
dc.citation.spage19
dc.citation.epage32


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد