نمایش مختصر رکورد

dc.contributor.authorسادات شهابی, محسنfa_IR
dc.contributor.authorشالباف, احمدfa_IR
dc.date.accessioned1403-12-20T20:33:48Zfa_IR
dc.date.accessioned2025-03-10T20:33:48Z
dc.date.available1403-12-20T20:33:48Zfa_IR
dc.date.available2025-03-10T20:33:48Z
dc.date.issued2024-04-01en_US
dc.date.issued1403-01-13fa_IR
dc.identifier.citationسادات شهابی, محسن, شالباف, احمد. (1403). تشخیص اختلال افسردگی عمده با استفاده از روش‌های هوش مصنوعی مبتنی بر سیگنال الکتروانسفالوگرام. مجله دانشکده پزشکی، دانشگاه علوم پزشکی تهران, 82(2), 125-133.fa_IR
dc.identifier.issn1683-1764
dc.identifier.issn1735-7322
dc.identifier.urihttp://tumj.tums.ac.ir/article-1-13038-other.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/1120417
dc.description.abstractزمینه و هدف: اختلال افسردگی عمده یکی از شایعترین و ناتوان‌کننده‌ترین اختلالات روانی می‌باشد. باتوجه به کاهش کیفیت زندگی این بیماران و ماهیت پیش‌رونده این بیماری‌ها، تشخیص به هنگام و درمان موثر این بیماری روانی ضروری می‌باشد. در این پژوهش از سیگنال‌های مغزی افراد برای تشخیص دقیق ابتلا به اختلال افسردگی عمده با استفاده از روش‌های هوش مصنوعی استفاده می‌شود. روش بررسی: در این مطالعه تحلیلی که از شهریور 1402 تا اسفند 1402 در دانشکده پزشکی دانشگاه علوم پزشکی شهیدبهشتی انجام شده است، وجود اختلال افسردگی عمده در 58 مراجعه‌کننده به کلینیک روانپزشکی با استفاده از مصاحبه حضوری با روانپزشک متخصص بررسی شد و 30 نفر با اختلال افسردگی عمده تشخیص داده شدند. سیگنال مغزی الکتروانسفالوگرام از این افراد ثبت شده و پس از پیش‌پردازش و تمیز شدن سیگنال به‌عنوان ورودی به مدل‌های هوش مصنوعی داده شد. مدل‌های هوش مصنوعی EEGNet، ShallowConvNet و DeepConvNet که مبتنی بر مدل‌های یادگیری عمیق کانولوشنی توسعه یافتند، برای دسته‌بندی سیگنال‌های مغزی افراد سالم و افسرده استفاده شدند. دقت دسته‌بندی این مدل‌ها روی داده تست جداگانه گزارش شده است. یافته‌ها: دقت تفکیک سیگنال مغزی افراد سالم و افسرده توسط مدل‌های EEGNet، ShallowConvNet و DeepConvNet به‌ترتیب برابر 3/92%، 2/83% و 2/92% می‌باشد. همچنین مدل EEGNet با حساسیت 9/98% و ویژگی 1/79% بهترین عملکرد را در میان مدل‌های بررسی شده داشته است. نتیجه‌گیری: دسته‌بندی افراد افسرده و سالم از روی سیگنال EEG با دقت بالا و به‌صورت تعمیم‌پذیر امکان‌پذیر است و مدل‌های هوش مصنوعی پیشنهاد شده می‌توانند در کلینیک‌های روانپزشکی به‌عنوان ابزارهای کمک تشخیصی مورد استفاده قرار گیرند.  fa_IR
dc.languageفارسی
dc.language.isofa_IR
dc.publisherدانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofمجله دانشکده پزشکی، دانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofTehran University Medical Journalen_US
dc.subjectهوش مصنوعیfa_IR
dc.subjectیادگیری عمیقfa_IR
dc.subjectالکتروانسفالوگرافیfa_IR
dc.subjectاختلال افسردگی عمده.fa_IR
dc.titleتشخیص اختلال افسردگی عمده با استفاده از روش‌های هوش مصنوعی مبتنی بر سیگنال الکتروانسفالوگرامfa_IR
dc.typeTexten_US
dc.typeمقاله اصیلfa_IR
dc.contributor.departmentگروه فیزیک و مهندسی پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی شهیدبهشتی، تهران، ایران.fa_IR
dc.contributor.departmentگروه فیزیک و مهندسی پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی شهیدبهشتی، تهران، ایران.fa_IR
dc.citation.volume82
dc.citation.issue2
dc.citation.spage125
dc.citation.epage133


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد