نمایش مختصر رکورد

dc.contributor.authorعلی‌میری ده‌باغی, هانیهfa_IR
dc.contributor.authorخوش‌گرد, کریمfa_IR
dc.contributor.authorشرینی, حمیدfa_IR
dc.contributor.authorجعفری خیرآبادی, سمیراfa_IR
dc.contributor.authorنعلینی, فرهادfa_IR
dc.date.accessioned1402-11-05T22:21:13Zfa_IR
dc.date.accessioned2024-01-25T22:21:25Z
dc.date.available1402-11-05T22:21:13Zfa_IR
dc.date.available2024-01-25T22:21:25Z
dc.date.issued2023-08-01en_US
dc.date.issued1402-05-10fa_IR
dc.identifier.citationعلی‌میری ده‌باغی, هانیه, خوش‌گرد, کریم, شرینی, حمید, جعفری خیرآبادی, سمیرا, نعلینی, فرهاد. (1402). تشخیص پنوموتوراکس با استفاده از الگوریتم‌های یادگیری ماشین و رادیومیکس: بررسی امکان جایگزینی رادیوگرافی ساده قفسه سینه به‌جای سی‌تی‌اسکن به‌منظور کاهش دوز پرتویی. مجله دانشکده پزشکی، دانشگاه علوم پزشکی تهران, 81(5), 339-348.fa_IR
dc.identifier.issn1683-1764
dc.identifier.issn1735-7322
dc.identifier.urihttp://tumj.tums.ac.ir/article-1-12588-other.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/1061162
dc.description.abstractزمینه و هدف: استفاده از الگوریتم‌های هوش مصنوعی برای کمک به تشخیص صحیح در تصاویر پزشکی یکی از مهم‌ترین کاربردهای این فناوری در حوزه تصویربرداری است. در این پژوهش امکان جایگزینی رادیوگرافی ساده قفسه سینه به‌منظور تشخیص پنوموتوراکس در مواردی که به‌طور معمول CT درخواست می‌گردد، با هدف کاهش دوز دریافتی بیماران، موردمطالعه قرار گرفت. روش بررسی: مطالعه حاضر یک مطالعه تحلیلی بوده و در بازه زمانی آذر 1401 تا خرداد 1402 در دانشگاه علوم پزشکی کرمانشاه انجام شده است. داده‌های مورداستفاده در این تحقیق از پرونده‌های 350 فرد مشکوک به پنوموتوراکس استخراج شده است. تصاویر جمع‌آوری شده در نرم‌افزار MATLAB تحت پیش‌پردازش قرار گرفتند. سپس سه الگوریتم یادگیری ماشین، شامل رگرسیون لجستیک شبکه الاستیک (LENR)، رگرسیون لجستیک لاسو (LLR) و بوستینگ تطبیقی (AdaBoost) روی داده‌ها به‌کار گرفته شد. برای ارزیابی عملکرد این مدل‌ها از معیارهای دقت، صحت، حساسیت، ویژگی، سطح زیر منحنی مشخصه عملکرد سیستم، امتیاز F1 و طبقه‌بندی نادرست استفاده شد. یافته‌ها: در مدل AdaBoost مقدار دقت در تصاویر رادیوگرافی و CT به‌ترتیب 99/17% و /98/27% محاسبه شد. مقدار AUC برای همین مدل در تصاویر رادیوگرافی برابر 100% و در تصاویر سی‌تی‌اسکن برابر 96/96% به‌دست آمد. نتیجه‌گیری: باتوجه‌به معیارهای موردارزیابی در مطالعه، دو مدل LLR و AdaBoost دارای عملکرد مشابهی در تصاویر رادیوگرافی و CT از نظر تشخیص افراد با و بدون‌پنوموتوراکس هستند، به‌گونه‌ای که می‌توان این عارضه را با دقت بالایی با استفاده از تکنیک‌های یادگیری ماشین در تصاویر رادیوگرافی نیز تشخیص داد و به‌این‌ترتیب از دریافت دوز پرتویی بالا ناشی از انجام CT در بیمار اجتناب نمود.  fa_IR
dc.format.extent585
dc.format.mimetypeapplication/pdf
dc.languageفارسی
dc.language.isofa_IR
dc.publisherدانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofمجله دانشکده پزشکی، دانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofTehran University Medical Journalen_US
dc.subjectهوش مصنوعیfa_IR
dc.subjectیادگیری ماشینfa_IR
dc.subjectپنوموتوراکس.fa_IR
dc.titleتشخیص پنوموتوراکس با استفاده از الگوریتم‌های یادگیری ماشین و رادیومیکس: بررسی امکان جایگزینی رادیوگرافی ساده قفسه سینه به‌جای سی‌تی‌اسکن به‌منظور کاهش دوز پرتوییfa_IR
dc.typeTexten_US
dc.typeمقاله اصیلfa_IR
dc.contributor.departmentگروه فیزیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.contributor.departmentگروه فیزیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.contributor.departmentگروه مهندسی پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.contributor.departmentکمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.contributor.departmentگروه رادیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.citation.volume81
dc.citation.issue5
dc.citation.spage339
dc.citation.epage348


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد